Alivisatos A.P., Chun M., Church G.M., Greenspan R.J., Roukes M.L., Yuste R., The Brain Activity Map project and the challenge of functional connectomics. Neuron 74, 970-4 (2012). //  Press Release

Alivisatos A.P., Roukes, M.L.et al.Nanotools for Neuroscience and Brain Activity Mapping ACS Nano 7, 1850-1866 (2013).

Alivisatos A.P., Chun M., Church G.M., Deisseroth K., Donoughe J.P., Greenspan R.J., McEuen P.L., Roukes M.L., Sejnowski T.J., Weiss P.S., Yuste R., The Brain Activity Map. Science 339, 1284-5 (2013).

Arlett, J.L., Moreaux, L. Fon, W., Roukes, M.L. (2017) Multiplexed chemical sensing on ultra-narrow electrophysiological neural probes, Final Report, NIH 5R21NS087453-02, unpublished.

Alivisatos A.P., Chun M., Church G.M., Greenspan R.J., Roukes M.L., Yuste R., A National Network of Neurotechnology Centers for the BRAIN Initiative. Neuron, online, 15 October 2015. DOI: http://dx.doi.org/10.1016/j.neuron.2015.10.015.

Dorman, M.G., Prisbe, M.A., Meindl, J.D. (1985) A monolithic signal processor for a neurophysiological telemetry system. IEEE J. Solid-State Circuits 20, 1185-1193.

Du, J., Roukes, M.L., and Masmanidis, S. C. Dual-side and three-dimensional microelectrode arrays fabricated from ultra-thin silicon substrates. Journal of Micromechanics and Microengineering19 (2009)

Du J.G. Riedel-Kruse I.H., Nawroth J.C., Roukes M.L., Laurent G., Masmanidis S.C., High-Resolution Three-Dimensional Extracellular Recording of Neuronal Activity With Microfabricated Electrode Arrays. Journal of Neurophysiology 101, 1671-1678 (2009).

Gao, H. et al. (2012) HermesE: A 96-channel full data rate direct neural interface in 0.13 um CMOS, IEEE J. Solid-State Circuits 47, 1043-1055.

Harrison, R.R., Charles, C.A. (2003) Low-power, low-noise CMOS amplifier for neural recording applications, IEEE Journal of Solid-State Circuits 38, 958-965.

Intan (2012) Intan Technologies RHA2000 Series datasheet. http://www.intantech.com/files/Intan_RHA2000_series_datasheet.pdf

Ji, J. & Wise, K. D. (1992) An implantable CMOS circuit interface for multiplexed microelectrode recording arrays. IEEE J. Solid-State Circuits 27, 433-443.

Pancrazio, J.J. et al. (1998) Description and demonstration of a CMOS amplifier-based-system with measurement and stimulation capability for bioelectrical signal transduction. Biosensors & Bioelectronics 13, 971-979.

Rios G., Lubenov E.V., Chi D., Roukes M.L., and Siapas A.G., Nanofabricated Neural Probes for Dense 3-D Recordings of Brain Activity. Nano Letters 16 (11), pp 6857–6862, DOI: 10.1021/acs.nanolett.6b02673.

Rios G. (2016) Nanofabricated Neural Probe System for Dense 3-D Recordings of Brain Activity. Dissertation (Ph.D.), California Institute of Technology. doi:10.7907/Z9BG2M0B

Segev E., Reimer J., Moreaux L.C., Fowler T.M., Chi D., Sacher W.D., Lo M., Deisseroth K., Tolias A.S., Faraon A., Roukes M.L.Patterned Photostimulation via Visible-Wavelength Photonic Probes for Deep Brain OptogeneticsNeurophotonics 4(1), 011002 (2017), doi: 10.1117/1.NPh.4.1.011002.  //  Press Release (by the journal).

Sodagar, A.M.; Perlin, G.E.; Ying, Y.; Najafi, K.; Wise, K.D. (2009) An implantable 64-channel wireless microsystem for single-unit neural recording. IEEE J. Solid State Circuits 44, 2591–2604.